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Abstract. A model suitable for simulating lyotropic polymer liquid crystals (PLCs) is
described. By varying the persistence length between infinity and 25, the effect of increasing
flexibility on the nematic–smectic transition of a PLC with a length-to-width ratioL/D = 6
is investigated. It is found that increasing flexibility shifts the formation of a smectic phase to
higher densities. Comparison is made with a recent theory of the nematic–smectic transition of
slightly flexible rods.

1. The model

In the 1940s, Onsager [1] showed that thin hard rods (with length-to-width ratioL/D → ∞)
can form a nematic phase at high enough densities. Subsequently, theories and computer
simulation of a variety of hard-body models of liquid crystals showed that excluded volume
effects could account not only for the stability of nematics but also for the existence of
smectic and columnar liquid crystalline phases [2–5]. However, in reality, liquid-crystal-
forming particles invariably exhibit some degree of flexibility. The effect of flexibility on the
isotropic–nematic transition of rod-like particles has been investigated both theoretically [6–
9] and by computer simulation [10–13]. The mesogen is modelled as a smooth semiflexible
chain with a bending energy, which gives rise to a characteristic lengthP , the persistence
length, over which the chain loses memory of its orientation. WhenL � P , the chain is
properly a polymer liquid crystal (PLC), with a shape that is dramatically dependent on the
state of order; whenL � P , the chain can be considered a slightly flexible rod. Even when
the degree of flexibility is slight, the properties of the system deviate significantly from those
of the idealized rod model. The location of the isotropic–nematic phase transition moves
to higher concentrations, and the phase gap decreases with increasing flexibility [13].

The effect of flexibility on the nematic–smectic transition is, as yet, unclear. Recent
theoretical work [14] valid for the limitP � L � D (i.e. flexible rods) indicates that the
smectic phase occurs at a higher density with increasing flexibility, and that the layer spacing
decreases with increasing flexibility. It was also tentatively speculated that the smectic phase
may become unstable for chains more than several deflection lengths long. More highly
ordered mesophases may be formed in preference to the smectic phase, i.e. a columnar
phase. Suspensions of tobacco mosaic virus (L/P < 0.1) and fd virus (L/D ' 0.4) have
a smectic phase [15], whereas DNA fragments (L/P ' 1) form a columnar phase at high
densities [16].
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The aim of this work is to use computer simulation to investigate the effect of flexibility
on the nematic–smectic transition of lyotropic semiflexible rods. Essentially, we adopt the
model studied by Dijkstra and Frenkel [13]. A chain is modelled asN spherocylinders of
length l = L/N , width D and orientationui , joined end over end to form a chain of fixed
length. A bending force acts on each of theN − 1 joints in the chain to give the chain
rigidity. The energy of jointi is given by

Ei = C

l
(1 − ui · ui+1) . (1)

C is the bending energy which, for an isolated chain, is related to the persistence length via
P = C/kBT . In the limit of small angles, (1) reduces to the more familiarEi = 1

2Cθ2
i,i+1/l

used by Dijkstra and Frenkel, whereθi,i+1 is the angle between the two spherocylinders.
The model has the advantage that the persistence length is easily controlled (in contrast
with the model of [12]), and in the limitP → ∞ the chain behaves as a rigid smooth
rod, providing contact with existing simulation and theoretical results. Dijkstra and Frenkel
used configurational bias Monte Carlo techniques to move the chains, an efficient scheme for
densities in the region of the isotropic–nematic transition. At higher densities this scheme
becomes unworkable; the system is just too dense to allow any Monte Carlo move to be
accepted. In order to use time-stepped molecular dynamics, which is much more efficient
than any Monte Carlo technique at high densities, we ‘soften’ the hard spherocylinder. Our
soft spherocylinders are described using a Kihara [17] potential. Particles interact via a pair
potential that depends on the distancec of closest approach of two convex bodies. When
the convex body is a line segment and the pair potential is

U(c) =
{

∞
0

for

{
c < D

c > D

the Kihara potential describes hard spherocylinders of widthD. We choose

U(c) =

 4ε

[(
D

c

)12

−
(

D

c

)6

+ 1

4

]
0

for

{
c/D < 21/6

c/D > 21/6

i.e. the WCA potential, whereD is our unit of length. The forces and torques at the closest
approach distance are then derived from this potential. Tests showed that equations of state
for spherocylinders interacting via this potential (withkBT /ε = 1) is extremely close to
those of hard spherocylinders [5].

2. Results

Results are presented for a system consisting of 832 polymers of four segments, with
L/D = 6, at a fixed temperaturekBT /ε = 1. P was varied between infinity and
25D. A constant chain length was maintained by constraint dynamics, and the temperature
maintained using Nosé–Hoover thermostats [18]. In order to ensure that the pressure tensor
was isotropic, the box shape was varied using a standard Metropolis Monte Carlo procedure.
Henceforth we shall adoptD = 1 as our unit of length and define the reduced density
ρ = n/ncp wheren is the number density, andncp = 2/(

√
2+ (L/D)

√
3) is the density of

regular close packing of hard spherocylinders.
The equation of state in the vicinity of the nematic–smectic transition was calculated

for a system of rods (i.e.P = ∞), by slowly compressing a low-density isotropic phase,
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and by slowly expanding a high density HCP solid of four layers of 208 particles. The
nematic–smectic transition appears very weakly first order, indicated by a slight hysteresis
in the equation of state. The transition occurs betweenρ = 0.50 and ρ = 0.52, in
broad agreement with the results of Bolhuis and Frenkel [5] for hard spherocylinders.
Configurations generated by expansion contained four smectic layers aligned along the
z direction. An analysis of the layer structure shows liquid-like order: the smectic is a
smectic A phase.

Figure 1. The radially averaged structure factorS(k) versuskD for a system withL/D = 6,
P = 100 at three different densities. (a)ρ = 0.56 is a strongly ordered smectic. The large
peak atkD = 0.844 corresponds to a well established smectic layering in thez direction with
spacing 7.44D. The is broad peak atkD ' 6 is indicative of local ordering within the layers.
(b) ρ = 0.54 is a smectic phase with less established layering. (c)ρ = 0.52 is a nematic phase
with strong smectic fluctuations.

Eight configurations from the expansion branch of the equation of state were used as
starting configurations for the polymer simulations, at reduced densities 0.49–0.56. Four
different persistence lengths,L = 200, 100, 50 and 25, were simulated. It was found that,
in general, increasing the flexibility of the polymer moves the nematic–smectic transition
to higher densities with a consequent decrease in the layer spacing of the smectic. The
classification of the phases as nematic and smectic presents some difficulties. Owing to the
small number of state points simulated, it was impossible to decide from the equations of
state whether a given state point was nematic or smectic. In high-density nematic phases,
long-lived smectic fluctuations develop and grow in amplitude with increasing density,
giving rise eventually to a well defined smectic state. This is seen in a plot of the radially
averaged structure factorS(k). Figure 1 showsS(k) versuskD for P = 100, at densities
of 0.56, 0.54 and 0.52. At ρ = 0.56, the system is clearly smectic. There is a strong peak
at kD = 0.844, indicating layers with a spacing ofd = 2π/k = 7.44D. Two subsequent
harmonics are also visible: the layering is well established. There is also a broad peak at
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Figure 2. The phase diagram. The inverse persistence length 1/P is plotted against reduced
densityρ. Nematic points are denoted by open circles, and smectic points by full diamonds.
The lines are two theoretical estimates of the nematic–smectic spinodal instability, the full curve
for a value ofβ = 0.0236, and the broken curve forβ = 0.0381; see text.

below kD ' 6, indicative of local ordering within the layers. Visual inspection confirms
that this is a strongly ordered smectic phase. Atρ = 0.54, the layering is still pronounced,
and again a visual inspection confirms this to be a smectic phase. Forρ = 0.52, the situation
is less clear; the peak inS(k) is much smaller and visual inspection shows something that
might be a nematic phase with strong smectic fluctuations. A plot of the density as a
function of thez coordinate (i.e. along the axis of the smectic) confirms thatρ = 0.52
is probably a nematic phase. On the basis of visual inspection, the projected density and
the radially averagedS(k), it was decided (arbitrarily) that state points with a maximum
value ofS(k) = Smax(k) > 5 would be deemed smectic. This classification gives the phase
diagram (figure 2). Smectic state points are indicated by full diamonds, and nematic points
by open circles. The lines are two estimates for the phase boundary determined from the
work of van der Schoot [14]. The nematic–smectic spinodal line is given by

ρ = ρ0

(
1 + β

Lα0

P

)
whereβ is a constant;ρ0 is the corresponding spinodal for the rigid rod system andα0

is related to the deflection length in the rod limit [8]. Settingρ0 = 0.51, and measuring
α0 = 33 from the orientational distribution function for rods atρ = 0.51, we obtain the two
lines in figure 2; the full curve withβ = 0.0236 is obtained from analysis of the free energy,
and the broken curve withβ = 0.0381 is obtained fromS(k). The agreement (probably
fortuitous) is surprisingly good forβ = 0.0236.

In conclusion we have observed that increasing the flexibility of liquid crystalline
molecules increases the density at which a smectic phase is formed and decreases the
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smectic layer spacing, in agreement with [14]. It may be that for sufficiently flexible chains
the smectic phase is completely suppressed and other, more highly ordered phases such as
the columnar phase appear. To date, however, we have no evidence that this occurs. At
much higher densities,ρ = 0.7, for all the values ofP studied here, the smectic phase is
always mechanically stable with respect to the columnar. States prepared in a columnar
phase relax to a smectic in a relatively short time (several tens of thousands of molecular
dynamics time steps). Simulations of longer chainsL/P ' 1 are currently in progress.
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